240 research outputs found

    Optimización de la gestión de redes de riego a presión a diferentes escalas mediante Inteligencia Artificial

    Get PDF
    Factors such as climate change, world population growth or the competition for the water resources make freshwater availability become an increasingly large and complex global challenge. Under this scenario of reduced water availability, increasing droughts frequency and uncertainties associated with a changing climate, the irrigated agriculture sector, particularly in the Mediterranean region, will need to be even more efficient in the use of the water resources. In Spain, many irrigation districts have been modernized in recent years, replacing the obsolete open channels by pressurized water distribution networks towards improvements in water use efficiency. Thanks to this, water use has reduced but the energy demand and the water costs have dramatically increased. Thus, strategies to reduce simultaneously water and energy uses in irrigation districts are required. This thesis consists of nine chapters, which include several models to optimize the management of the irrigation districts and increase the efficiency of water and energy use.Factores tales como el cambio climático, el crecimiento de la población mundial o la competencia por los recursos hídricos hacen que la disponibilidad de agua se esté convirtiendo en un desafío global cada vez más grande y complejo. En este escenario de reducción de la disponibilidad de agua, aumento de la frecuencia de las sequías y de las incertidumbres asociadas a un cambio climático, el sector de la agricultura de regadío, en particular en la región mediterránea, tendrá que ser aún más eficiente en el uso de los recursos hídricos. En España, muchas comunidades de regantes se han modernizado en los últimos años, sustituyendo los obsoletos canales abiertos por redes de distribución de agua a presión con el objetivo de mejorar la eficiencia en el uso del agua. Gracias a esto, el uso del agua se ha reducido, pero la demanda de energía y los costos del agua se han incrementado drásticamente. Por lo tanto, se requieren estrategias para reducir simultáneamente el uso de agua y energía en las comunidades de regantes. Esta tesis consta de nueve capítulos que incluyen varios modelos para optimizar la gestión de las comunidades de regantes y aumentar la eficiencia en el uso del agua y la energía

    Critical points: interctions between on-farm irrigation systems and water distribution network. Application in Bembezar M.D., Spain

    Get PDF
    Premio extraordinario de Trabajo Fin de Máster curso 2012-2013.Proyectos y Gestión de Plantas AgroindustrialesIn this work, a new model useful to analyze interactions between the on-farm irrigation system supplied by critical points and the water supply network management is developed. The model evaluates the impacts of changes in the pressure head and demand simultaneity on the irrigation systems and evaluates the emitters’ discharge and uniformity. Also, the potential reductions in yield due to lower uniformity are evaluated. The methodology is applied in Bembézar Irrigation District (Southern Spain). Results showed that the additional cost required for giving maximum pressure in the critical point does not offset the increase in yield. Hence, an increment from 91.7 % to 92.1 % in yield in the critical field would represent increases in energy consumption from 0.15 kWh m-3 to 0.17 kWh m-3. Also, the unit energy cost could be reduced in up to 0.11 kWh m-3 not implying significant reductions in yield. The importance of a good election of emitters in the critical fields is also evaluated

    Optimización de la predicción de demanda de agua mediante algoritmos neuro-genéticos para un conjunto de datos reducido

    Get PDF
    La predicción de la demanda de agua es uno de los factores principales en el diseño y gestión de sistemas de abastecimiento y distribución de agua. Recientemente, avanzadas técnicas en inteligencia computacional como las Redes Neuronales Artificiales (RNAs) han sido aplicadas para la predicción de series temporales con importantes resultados. En este trabajo se ha desarrollado una metodología híbrida que combina RNAs y Algoritmos Genéticos multiobjetivo para la predicción a corto plazo de la demanda de agua en una Comunidad de Regantes cuando la disponibilidad de datos es escasa. El modelo fue desarrollado utilizando datos de series temporales del Sector VII de la Zona Regable Bembézar M.D. Tras el proceso de optimización con un algoritmo genético multiobjetivo se obtuvo una RNA de tipo perceptrón multicapa entrenada mediante el algoritmo Regularización Bayesiana con 24 neuronas en la primera capa oculta y 21 en la segunda. El modelo desarrollado fue capaz de explicar el 95 % de la varianza total de los datos observados con un Error Estándar de Predicción del 9.38 % (periodo de test).Ministerio de Economía y Competitivida

    New memory-based hybrid model for middle-term water demand forecasting in irrigated areas

    Get PDF
    The energy demand and their associated costs in pressurized irrigation networks together with water scarcity are currently causing serious challenges for irrigation district’s (ID) managers. Additionally, most of the new water distribution networks in IDs have been designed to be operated on-demand complexing ID managers the daily decision-making process. The knowledge of the water demand several days in advance would facilitate the management of the system and would help to optimize the water use and energy costs. For an efficient management and optimization of the water-energy nexus in IDs, longer term forecasting models are needed. In this work, a new hybrid model (called LSTMHybrid) combining Fuzzy Logic (FL), Genetic Algorithm (GA), LSTM encoder-decoder and dense or full connected neural networks (DNN) for the one-week forecasting of irrigation water demand at ID scale has been developed. LSTMHybrid was developed in Python and applied to a real ID. The optimal input variables for LSTMHydrid were mean temperature (°C), reference evapotranspiration (mm), solar radiation (MJ m−2) and irrigation water demand of the ID (m3) from 1 to 7 days prior to the first day of prediction. The optimal LSTMHybrid model selected consisted of 50 LSTM cells in the encoder submodel, 409 LSTM cells in the decoder submodel and three hidden layers in the DNN submodel with 31, 96 and 128 neurons in each hidden layer, respectively. Thus, LSTMHybrid had a total of 1.5 million parameters, obtaining a representativeness higher than 94 % and an accuracy around of 20 %

    Optimizing CIGB-300 intralesional delivery in locally advanced cervical cancer

    Get PDF
    Background:We conducted a phase 1 trial in patients with locally advanced cervical cancer by injecting 0.5 ml of the CK2-antagonist CIGB-300 in two different sites on tumours to assess tumour uptake, safety, pharmacodynamic activity and identify the recommended dose.Methods:Fourteen patients were treated with intralesional injections containing 35 or 70 mg of CIGB-300 in three alternate cycles of three consecutive days each before standard chemoradiotherapy. Tumour uptake was determined using 99 Tc-radiolabelled peptide. In situ B23/nucleophosmin was determined by immunohistochemistry.Results:Maximum tumour uptake for CIGB-300 70-mg dose was significantly higher than the one observed for 35 mg: 16.1±8.9 vs 31.3±12.9 mg (P=0.01). Both, AUC 24h and biological half-life were also significantly higher using 70 mg of CIGB-300 (P<0.001). Unincorporated CIGB-300 diffused rapidly to blood and was mainly distributed towards kidneys, and marginally in liver, lungs, heart and spleen. There was no DLT and moderate allergic-like reactions were the most common systemic side effect with strong correlation between unincorporated CIGB-300 and histamine levels in blood. CIGB-300, 70 mg, downregulated B23/nucleophosmin (P=0.03) in tumour specimens.Conclusion:Intralesional injections of 70 mg CIGB-300 in two sites (0.5 ml per injection) and this treatment plan are recommended to be evaluated in phase 2 studies.Fil: Sarduy, M. R.. Medical-surgical Research Center; CubaFil: García, I.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Coca, M. A.. Clinical Investigation Center; CubaFil: Perera, A.. Clinical Investigation Center; CubaFil: Torres, L. A.. Clinical Investigation Center; CubaFil: Valenzuela, C. M.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Baladrón, I.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Solares, M.. Hospital Materno Ramón González Coro; CubaFil: Reyes, V.. Center For Genetic Engineering And Biotechnology Havana; CubaFil: Hernández, I.. Isotope Center; CubaFil: Perera, Y.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Martínez, Y. M.. Medical-surgical Research Center; CubaFil: Molina, L.. Medical-surgical Research Center; CubaFil: González, Y. M.. Medical-surgical Research Center; CubaFil: Ancízar, J. A.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Prats, A.. Clinical Investigation Center; CubaFil: González, L.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Casacó, C. A.. Clinical Investigation Center; CubaFil: Acevedo, B. E.. Centro de Ingeniería Genética y Biotecnología; CubaFil: López Saura, P. A.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Alonso, Daniel Fernando. Universidad Nacional de Quilmes; ArgentinaFil: Gómez, R.. Elea Laboratories; ArgentinaFil: Perea Rodríguez, S. E.. Center For Genetic Engineering And Biotechnology Havana; Cuba. Centro de Ingeniería Genética y Biotecnología; Cub

    Modelling impacts of precision irrigation on crop yield and in-field water management

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),Precision irrigation technologies are being widely promoted to resolve challenges regarding improving crop productivity under conditions of increasing water scarcity. In this paper, the development of an integrated modelling approach involving the coupling of a water application model with a biophysical crop simulation model (Aquacrop) to evaluate the in-field impacts of precision irrigation on crop yield and soil water management is described. The approach allows for a comparison between conventional irrigation management practices against a range of alternate so-called ‘precision irrigation’ strategies (including variable rate irrigation, VRI). It also provides a valuable framework to evaluate the agronomic (yield), water resource (irrigation use and water efficiency), energy (consumption, costs, footprint) and environmental (nitrate leaching, drainage) impacts under contrasting irrigation management scenarios. The approach offers scope for including feedback loops to help define appropriate irrigation management zones and refine application depths accordingly for scheduling irrigation. The methodology was applied to a case study in eastern England to demonstrate the utility of the framework and the impacts of precision irrigation in a humid climate on a high-value field crop (onions). For the case study, the simulations showed how VRI is a potentially useful approach for irrigation management even in a humid environment to save water and reduce deep percolation losses (drainage). It also helped to increase crop yield due to improved control of soil water in the root zone, especially during a dry season

    REUTIVAR: Model for Precision Fertigation Scheduling for Olive Orchards Using Reclaimed Water

    Get PDF
    Olive orchard is the most representative and iconic crop in Andalusia (Southern Spain). It is also considered one of the major economic activities of this region. However, due to its extensive growing area, olive orchard is also the most water-demanding crop in the Guadalquivir River Basin. In addition, its fertilization is commonly imprecise, which causes over-fertilization, especially nitrogen. This leads to pollution problems in both soil and water, threating the environment and the system sustainability. This concern is further exacerbated by the use of reclaimed water to irrigate since water is already a nutrient carrier. In this work, a model which determines the real-time irrigation and fertilization scheduling for olive orchard, applying treated wastewater, has been developed. The precision fertigation model considers weather information, both historical and forecast data, soil characteristics, hydraulic characteristics of the system, water allocation, tree nutrient status, and irrigation water quality. As a result, daily information about irrigation time and fertilizer quantity, considering the most susceptible crop stage, is provided. The proposed model showed that by using treated wastewater, additional fertilization was not required, leading to significant environmental benefits but also benefits in the total farm financial costs

    Reducing the energy demand in irrigation water supply systems. Experiences from southern Europe

    Get PDF
    In recent years, many modernization processes have been undertaken in irrigation districts with a view to improving water use efficiency. In southern Spain, many irrigation districts have either been modernized or are currently being upgraded. However, as part of the modernization process some unexpected side effects have been observed. This paper analyzes the relative advantages and limitations of modernization based on field data collected in a typical Andalusian irrigation district. Although the amount of water diverted for irrigation to farms has been considerably reduced, consumptive use has increased. The costs for operation and system maintenance have dramatically risen (400%), as the energy for pumping water is much higher now compared to the gravity fed systems used previously. Then a regional analysis of the relationship between energy requirements and irrigation water applied in ten irrigation districts, in Southern Spain, has been carried out. Results show that 1000 kWh ha–1 is the energy required to apply an average depth of 2590 m3 ha-1. Finally, energy saving options are identified and discussed

    The 5 Objects Test: Normative data from a Spanish community sample

    Get PDF
    [EN]Objective: The objective of this study was to provide normative data for the 5 Objects Test in a large Spanish community sample, as well as some validity evidence. Methods: The sample was composed of 427 participants (of which 220 females, age 15 to 95 years old; educational level range: 2–17 years). Normative data are provided, as well as correlations with test scores from Benton Visual Retention test, Rey-Osterrieth Complex Figure and Mini Mental State Examination. Results: No association was found between delayed recall score and level of education, age or gender. Immediate recall score was correlated with age. Both immediate and delayed recall significantly correlated with the criteria, evidencing concurrent validity. Conclusions: It is recommended that the 5 Objects Test be used for assessing persons in primary care, including those from different linguistic backgrounds or with limited language use. Delayed recall scores are especially recommended given the lack of association with demographic variables

    EnjoyYourLAB: a mobile application that supports the lecturing in the Hydraulics laboratories (Phase II)

    Get PDF
    EnjoyYourLAB es una aplicación móvil (APP) de apoyo a la docencia de las prácticas de laboratorio de Ingeniería Hidráulica. En esta segunda fase se ha depurado la aplicación y se ha completado con la incorporación de la recreación virtual del laboratorio de la Escuela Politécnica Superior de Belmez y con la edición de los vídeos de las prácticas de laboratorio. Se han editado vídeos docentes de las prácticas de laboratorio referentes a medida de presiones y aforo de caudales, pérdidas de carga en tuberías y singularidades, determinación de la curva característica de una bomba y punto de funcionamiento, régimen uniforme y gradualmente variado en canales abiertos y determinación de las fuerzas de empuje sobre superficies planas sumergidas. A través de la App los alumnos tendrán acceso a la plataforma Moodle, a las memorias de prácticas, material audiovisual e información técnica de los distintos dispositivos empleados. A través de esta herramienta los estudiantes tendrán disponible un mayor nivel de información, que podrán consultar y visualizar tantas veces cómo deseen lo que contribuirá a la solidez del conocimiento adquirido.EnjoyYourLAB is a mobile application that supports the practical lessons in the hydraulics laboratory. In the second phase, the App has been updated with a virtual rendering of the Lab at the Advanced Polytechnic School of Belmez and with the edited videos of the practical sessions. The videos edited are about the pressure and flow measurements, head losses in pressurized pipes, characteristics curves of a pump, steady and variable flow in open channels, and the estimation of the hydrostatic forces in submerged surfaces Also students have access to the moodle platform, guidelines for the practical exercises, audios, and technical information. Through this tool the students have access to a higher level of data, which can check at any time, and the number of time required to improve the robustness of the acquired knowledge
    corecore